Asymmetrization of 2-substituted Glycerols: Syntheses of *R*-Etomoxir and *R*-Palmoxirate

Kapa Prasad^{*}, Heinrich Estermann, Chung-Pin Chen, Oljan Repic, and Goetz E. Hardtmann Sandoz Research Institute East Hanover, New Jersey 07936, USA

(Received 18 May 1990)

Abstract: Formal syntheses of *R*-etomoxir and *R*-palmoxirate are described utilizing 6a and 6b as key chiral intermediates.

Differentiation of enantiotopic functional groups mediated by enzymes is an important method¹ for the synthesis of chiral building blocks which are highly useful in organic synthesis. Recently we reported² the enzyme-catalyzed asymmetrization of 2,5-disubstituted tetrahydrofurans. In continuation of this study and based on the retrosynthetic analysis (shown below) that the optically active form of hypoglycemic agents like etomoxir³ and palmoxirate⁴ could be derived from the prochiral 2-substituted glycerols, we investigated the enzyme-catalyzed enatiotopic differentiation of these compounds. In this communication, we present the syntheses of optically active 2-substituted glycerols **6a** and **6b** and their conversion into hypoglycemic agents R-etomoxir³ and R-palmoxirate⁴.

The syntheses of the hitherto unknown prochiral 2-substituted glycerols 4a and 4b were accomplished in three steps (Scheme) starting from the corresponding bromides 1a and 1b. Alkylation (NaOEt/EtOH) of diethyl malonate with 1a gave the diester 2a, mp 38-39 °C, which was converted into the allyl alcohol⁵ 3a via a modified Marshall's method^{6,7,} i.e., the reduction of anion of 2a using Red-Al^R in toluene at 45 °C. Dihydroxylation of 3a with OsO4/N-methylmorpholine-N-oxide⁸ gave 4a, mp 102-104 °C, in 50% overall yield from 1a. Glycerol 4b, mp 98-100 °C, was made in a similar manner starting from 1b. Dibutyrates 5a (oil) and 5b (mp 24-26 °C), were made from 4a and 4b respectively utilizing butyroyl chloride/NEt₃ in CH₂Cl₂ in high yield (5a, 84%; 5b, 97%).

K. PRASAD et al.

The enantioselective hydrolysis^{9,10} of **5a** and **5b** was carried out with different hydrolytic enzymes and the results are tabulated in Tables 1 & 2. Although the enantiotopic differentiation under the standard aqueous buffer conditions (entries 1 and 5-9, Table 1; entries 1 and 3-8, Table 2) was less satisfactory, we were rather pleased to see the effect of organic co-solvents on the optical purity of the hydrolysis products. Monobutyrates **6a** (oil) and **6b**¹¹ (mp 41-42 °C), were indeed obtained in >92% and 87% *ee* respectively when hexane or methylcyclohexane (entries 3 and 4, Table 1 & entry 2, Table 2) was used as a co-solvent in the hydrolysis with porcine pancreas lipase.

<u>a</u> Diethylmalonate, NaOEt/EtOH; <u>b</u> NaH/tol → reflux → Red-Al^R, 45 °C; <u>c</u> OsO₄, N-methyl-morpholine-N-oxide, acetone/H₂O, <u>d</u>. Butyroyl chloride/NEt₃, CH₂Cl₂, 0 °C, <u>e</u> PPL, Hex/pH 7 buffer, r.t., <u>f_i</u> (CF₃SO₂)₂O/Py, -20 °C to r.t.; <u>f_i</u> MeOH/K₂CO₃.

The absolute configurations of monobutyrates **6a** and **6b** were unambiguously assigned as *R* by chemical correlation with the corresponding known epoxides **7a**, $[\alpha]_D - 10$, 92% *ee* (**7a**, made by a literature method¹², $[\alpha]_D - 10.5$, >98% *ee*, c = 1, CHCl₃); and **7b**, $[\alpha]_D - 9$ (lit⁴. -9.5°, c = 0.5, CHCl₃). The conversion of monobutyrates to the epoxides was effected in almost quantitative yield by treating with trifluoromethane sulfonic anhydride/pyridine followed by K₂CO₃/MeOH. The optical purities were determined by HPLC (Daicel Chiracel ODS column; mobile phase: Hex/IPA (98:2)) of the diastereometric Mosher's esters.

As the epoxides 7a and 7b have already been converted in the literature^{3,4} to *R*-etomoxir and *R*-palmoxirate respectively, the present method represents a new strategy for the enantioselective synthesis of the above hypoglycemic agents.

Entry No	Enzyme ¹³ / amount	Co-solvent	Reaction time [h]	NaOH consumed (eq)	Yıeld ^a (%)	[α] _D (<i>c</i> =1, tol)	ee (%)
1	PPL/103mg	-	2	>1 0	46	-4	73
2	PPL/115mg	heptane	05	>1 0	48	-4.9	89
3	PPL/115mg	hexane	05	>1 0	45	-49	92
4	PPL/115mg	methylcyclo-	05	>1 0	51	-49	93
5	LPF/11mg	nexane -	75	0 55	40	-15	-
6	CCL/101mg	-	8 25	0 76	12	-11	-
7	LCL/151mg	-	63	0 98	49	-43	79
8	LRD/12mg	-	11	0.70	50	-4	74
9	LRN/197mg	-	10 5	0 62	47	-43	78

Table 1 Enzymatic hydrolysis¹⁰ of 5a

Table 2⁻ Enzymatic hydrolysis¹⁰ of 5b

Entry No	Enzyme ¹³ / amount	Co-solvent	Reaction time [h]	NaOH consumed (eq)	Yield ^a (%)	[α] _D (<i>c</i> =1, tol)	<i>ee</i> (%)
1	PPL/104mg	-	35	>1 0	66	- 4	57
2	PPL/115mg	hexane	15	>1 0	49	-61	87
3	LRA/100mg	-	48	>1 0	51	-61	86
4	LPF/11mg	-	9	0 78	53	-3	-
5	CCL/110mg	-	6 25	10	17	-0.5	•
6	LRD/11mg	-	22	0 94	58	- 4	-
7	LCL/22mg		-	no reaction	-	-	-
8	LRN/22mg	-	-	no reaction	-	-	-

 a. Isolated yield after flash chromatography Variable amounts of starting material and overhydrolysis products were isolated in every reaction Acknowledgement: We thank Dr. M. Shapiro for NMR data and Mr. Lance E. Janaskie for HPLC analyses. References and Notes

- 1. J.B. Jones, Tetrahedron, 1986, 42, 3351 and references cited therein.
- H. Estermann, K. Prasad, M.J. Shapiro, O. Repic, and G.E. Hardtmann, *Tetrahedron Lett.*, 1990, 31, 445.
- 3. M.M.L. Crilley, A.J.F. Edmunds, K. Eistetter, and B.T. Golding, Tetrahedron Lett., 1989, 30, 885.
- 4. W. Ho, O. Tarhan, T.C. Kiorpes, G.F. Tutwiler, and R.J. Mohrbacher, J. Med. Chem., 1987, 30, 1094.
- 5. Allyl alcohol **3a** was reported earlier (ref. 3) and it was made in three steps from the corresponding conjugated ester.
- 6. The reduction of sodium salt of malonates with LiAH4 as reported by Marshall (ref. 7) offers a direct one step method for the synthesis of allyl alcohols. However, the literature conditions with malonate 2a produced 3a and the corresponding saturated alcohol in the ratio of 2.5:1. Modification of these conditions with NaH/tol/Red-Al^R/45 °C gave the above alcohols in a more favorable ratio (9:1).
- 7. J.A. Marshall, N.H. Andersen, and A.R. Hochstetler, J. Org. Chem., 1967, 32, 113.
- 8. V.V. Rheenen, R.C. Kelly, and D.Y. Cha, Tetrahedron Lett, 1976, 17, 1973.
- 9. In the present studies our attention was directed to butyrates alone as our studies² on related systems showed a definite advantage with butyrates compared to acetates and ocatanoates.
- 10. <u>General Procedure</u>: 5 mmol of diester was mixed with 50 mL of 0.1 M pH 7 buffer, followed by the addition of the enzyme. The mixture was sturred at r. t., maintaining the pH at 7 by means of an auto burette. Working up with EtOAc followed by flash chromatography (S1O₂, Hexane/EtOAc) gave pure monoesters. In the case of entries 2-4 of Table 1 and entry 2 of Table 2 the mixture was diluted with an equal volume of the appropriate organic solvent before the addition of the enzyme.
- ¹³C-NMR(CDCl₃): **5a**: 173.53, 157.72, 129.27, 125.36, 115.78, 72.56, 68.17, 66.54, 36.07, 34.74, 29.79, 29.08, 25.88, 22.55, 18.42, and 13.63; **5b**: 173.56, 72.59, 66.57, 36.08, 34.87, 31.95, 30.11, 29.71, 29.68, 29.57, 29.49, 29.38, 22.71, 22.63, 18.43, 14.13 and 13.65; **6a**: 174.20, 157.68, 129.21, 125.32, 115.75, 73.44, 68.18, 66.20, 65.47, 36.09, 34.28, 29.85, 29.06, 25.87, 22.60, 18.43, and 13.61; **6b**: 174.32, 73.54, 66.30, 65.57, 36.15, 34.47, 31.94, 30.20, 29.70, 29.67, 29.59, 29.53, 29.37, 22.75, 22.70, 18.47, 14.12, and 13.67 ppm.
- 12. This compound was reported earler in ref. 3 utilizing Sharpless epoxidation methodology on 3a. However, the reported optical rotation ($[\alpha]_D - 30.7$, c = 1 in CHCl₃) was found to be in error by us. We repeated this epoxidation independently and confirmed the optical purity unambiguously by HPLC analysis of the corresponding Mosher's esters.
- 13. The enzymes that were used are abbreviated as follows: PPL = porcine pancreas lipase (Sigma); LPF = lipase from *Pseudomonas fluorescence* (Fluka); CCL = lipase Type VII from *Candida cylindracea* (Sigma); LCL = lipase from *Candida lipolytica* (Fluka); LRD = lipase from *Rhizopus delemar* (Fluka); LRN = lipase from *Rhizopus niveus* (Fluka); LRA = lipase from *Rhizopus arrhizus* (Fluka).